TIS-126 Clock Distribution Buffer

While there are different ways to distribute high-quality reference-clocks to multiple receivers and transmitters, or to general lab equipment, perhaps the best and easiest is with a Clock Distribution Buffer. The TIS-126 has been designed for this job:

This image has an empty alt attribute; its file name is back-1024x440.jpg

This unit can send a square-wave clock to six output ports. Input and output are 50 Ohm impedance, and the frequency range is from 100 KHz to 100 MHz (and down to under 1 Hz in many cases). The input level can range from -20 dBm to +20 dBm.

For details, see the product link: TIS-126

Six Band Filter-Combiner

This has been in use for a while, combining the multiple outputs of the Beacon Blaster and WSPRSONDE onto one SMA jack, allowing the use of a single antenna. The results have been excellent, so this box is now on the Turn Island Systems website, available for purchase:

Six Band Filter-Combiner

A product manual is available, as well as a general discussion of the filter-combiner concept.

Applications for the Filter-Combiner are not limited to the WSPRSONDE. Some have used this to combine the outputs of other QRP (1W or less) transmitters. One person is using the Filter-Combiner in reverse as a general preselector, sending the output of a single multiband antenna to several narrow-band SDR receivers (reducing overload from out-of-band signals).

What about eight bands? I glad you asked that question! Fitting additional bands into the combiner has proven to be a major challenge. A 160 meter port can’t be implemented using available (inexpensive) components — too much inductor loss. Squeezing the 17 and 12 meter bands into the gaps between 20, 15, and 10 meters also requires inductor tolerance and loss well beyond that of readily-available parts. However, if there is demand for it a future combiner could include a 6-meter port.

But single-channel filters can be provided for those “oddball” frequencies.

RX888 External Clock Interface Kit

As you may know, the powerful RX888 SDR receiver is truly a game-changer — especially when used in conjunction with ka9q-radio and wsprdaemon software. This combination provides full HF-band coverage and analysis — much more than I can go into here.

But to obtain the desired frequency accuracy and stability necessary for serious propagation analysis the RX888 does need an external 27 MHz reference clock. Fortunately, the receiver provides a small “U.FL” connector on the board, allowing easy interface to the clock circuitry. However, it’s not as simple as connecting the output of a GPSDO (typically a Bodnar, or the upcoming TAPR reference). The RX888 clock input does not provide a 50 Ohm termination, and requires an AC-coupled reference of around 1V P-P. What is needed at this interface is a DC-block, an attenuator, and a termination.

Rather than string together a bunch of little adaptors, we (Turn Island Systems and TAPR) have come up a single-board solution, as well as a replacement back-panel (so you don’t have to drill a hole in the existing panel for an SMA jack), and a short U.FL jumper cable.

That SMA plug on the right-hand side of the adaptor is not installed for the “Inside the RX888” configuration, but the footprint is there so this board can be used as an external adaptor.

As you can see, the circuit is quite simple. Here’s the schematic:

And it’s pretty easy to cobble together an interface board yourself. Here’s my first attempt, which has been in operation for about a month now. This one isn’t exactly the same (it’s missing one capacitor and the attenuator values are slightly different):

I usually do my prototyping with surface-mount components, but for old-times sake I decided to use my old stash of through-hole parts on this. I’m waiting for delivery of the assembled boards, but if all goes as planned these kits should be available by the end of April.

If you want to use off-the-shelf components to interface between a Bodnar GPSDO and the RX888, I recommend inserting a DC-block at the RX888 external clock jack, followed by a 10 dB attenuator (the links are to probably-OK parts, I haven’t tried these particular ones myself). The attenuator reduces the output of the Bodnar to a more appropriate level, and provides a “good enough” termination at the RX888. Since the board-end of the internal jumper cable is unterminated the 10dB attenuator only provides about 8 dB of attenuation, and this is fine. The attenuator also provides a compromise termination to both the cable from the GPSDO and to the internal jumper.

Here is a good description of the do-it-yourself external clock modification to the RX888: http://www.sonic.net/~n6gn/ExtClockMod.pdf

Note that since Glenn wrote this we have discovered that the coupling / DC-block capacitor is desirable. Also, Glenn has included a switch that allows you to enable/disable the RX888 internal clock. Many of us are not bothering with the switch, but just pulling the internal “enable” jumper clip.

And here is another excellent post from KA7OEI that discusses the RX888 External Clock issue in good detail: mk2.htmlhttps://ka7oei.blogspot.com/2024/03/using-external-clock-with-rx-888-mk2.html